extension | φ:Q→Out N | d | ρ | Label | ID |
(Q8xC32).1C6 = He3:6Q16 | φ: C6/C1 → C6 ⊆ Out Q8xC32 | 144 | 12- | (Q8xC3^2).1C6 | 432,160 |
(Q8xC32).2C6 = Q8:C9:3S3 | φ: C6/C1 → C6 ⊆ Out Q8xC32 | 144 | 4 | (Q8xC3^2).2C6 | 432,267 |
(Q8xC32).3C6 = S3xQ8:C9 | φ: C6/C1 → C6 ⊆ Out Q8xC32 | 144 | 4 | (Q8xC3^2).3C6 | 432,268 |
(Q8xC32).4C6 = C6.(S3xA4) | φ: C6/C1 → C6 ⊆ Out Q8xC32 | 72 | 12+ | (Q8xC3^2).4C6 | 432,269 |
(Q8xC32).5C6 = C3xDic3.A4 | φ: C6/C1 → C6 ⊆ Out Q8xC32 | 48 | 4 | (Q8xC3^2).5C6 | 432,622 |
(Q8xC32).6C6 = C3:Dic3.2A4 | φ: C6/C1 → C6 ⊆ Out Q8xC32 | 144 | | (Q8xC3^2).6C6 | 432,625 |
(Q8xC32).7C6 = SD16x3- 1+2 | φ: C6/C1 → C6 ⊆ Out Q8xC32 | 72 | 6 | (Q8xC3^2).7C6 | 432,220 |
(Q8xC32).8C6 = Q16xHe3 | φ: C6/C1 → C6 ⊆ Out Q8xC32 | 144 | 6 | (Q8xC3^2).8C6 | 432,222 |
(Q8xC32).9C6 = Q16x3- 1+2 | φ: C6/C1 → C6 ⊆ Out Q8xC32 | 144 | 6 | (Q8xC3^2).9C6 | 432,223 |
(Q8xC32).10C6 = C6xQ8:C9 | φ: C6/C2 → C3 ⊆ Out Q8xC32 | 432 | | (Q8xC3^2).10C6 | 432,334 |
(Q8xC32).11C6 = C2xQ8:3- 1+2 | φ: C6/C2 → C3 ⊆ Out Q8xC32 | 144 | | (Q8xC3^2).11C6 | 432,335 |
(Q8xC32).12C6 = C3xQ8.C18 | φ: C6/C2 → C3 ⊆ Out Q8xC32 | 216 | | (Q8xC3^2).12C6 | 432,337 |
(Q8xC32).13C6 = Q8:C9:4C6 | φ: C6/C2 → C3 ⊆ Out Q8xC32 | 72 | 6 | (Q8xC3^2).13C6 | 432,338 |
(Q8xC32).14C6 = C4oD4:He3 | φ: C6/C2 → C3 ⊆ Out Q8xC32 | 72 | 6 | (Q8xC3^2).14C6 | 432,339 |
(Q8xC32).15C6 = C2xQ8x3- 1+2 | φ: C6/C2 → C3 ⊆ Out Q8xC32 | 144 | | (Q8xC3^2).15C6 | 432,408 |
(Q8xC32).16C6 = C4oD4x3- 1+2 | φ: C6/C2 → C3 ⊆ Out Q8xC32 | 72 | 6 | (Q8xC3^2).16C6 | 432,411 |
(Q8xC32).17C6 = C32xC4.A4 | φ: C6/C2 → C3 ⊆ Out Q8xC32 | 144 | | (Q8xC3^2).17C6 | 432,699 |
(Q8xC32).18C6 = C9xQ8:2S3 | φ: C6/C3 → C2 ⊆ Out Q8xC32 | 144 | 4 | (Q8xC3^2).18C6 | 432,158 |
(Q8xC32).19C6 = C9xC3:Q16 | φ: C6/C3 → C2 ⊆ Out Q8xC32 | 144 | 4 | (Q8xC3^2).19C6 | 432,159 |
(Q8xC32).20C6 = S3xQ8xC9 | φ: C6/C3 → C2 ⊆ Out Q8xC32 | 144 | 4 | (Q8xC3^2).20C6 | 432,366 |
(Q8xC32).21C6 = C9xQ8:3S3 | φ: C6/C3 → C2 ⊆ Out Q8xC32 | 144 | 4 | (Q8xC3^2).21C6 | 432,367 |
(Q8xC32).22C6 = C32xC3:Q16 | φ: C6/C3 → C2 ⊆ Out Q8xC32 | 144 | | (Q8xC3^2).22C6 | 432,478 |
(Q8xC32).23C6 = C3xC32:7Q16 | φ: C6/C3 → C2 ⊆ Out Q8xC32 | 144 | | (Q8xC3^2).23C6 | 432,494 |
(Q8xC32).24C6 = SD16xC3xC9 | φ: C6/C3 → C2 ⊆ Out Q8xC32 | 216 | | (Q8xC3^2).24C6 | 432,218 |
(Q8xC32).25C6 = Q16xC3xC9 | φ: C6/C3 → C2 ⊆ Out Q8xC32 | 432 | | (Q8xC3^2).25C6 | 432,221 |
(Q8xC32).26C6 = Q16xC33 | φ: C6/C3 → C2 ⊆ Out Q8xC32 | 432 | | (Q8xC3^2).26C6 | 432,519 |
(Q8xC32).27C6 = Q8xC3xC18 | φ: trivial image | 432 | | (Q8xC3^2).27C6 | 432,406 |
(Q8xC32).28C6 = C4oD4xC3xC9 | φ: trivial image | 216 | | (Q8xC3^2).28C6 | 432,409 |