Extensions 1→N→G→Q→1 with N=Q8xC32 and Q=C6

Direct product G=NxQ with N=Q8xC32 and Q=C6
dρLabelID
Q8xC32xC6432Q8xC3^2xC6432,732

Semidirect products G=N:Q with N=Q8xC32 and Q=C6
extensionφ:Q→Out NdρLabelID
(Q8xC32):1C6 = He3:10SD16φ: C6/C1C6 ⊆ Out Q8xC327212+(Q8xC3^2):1C6432,161
(Q8xC32):2C6 = Q8:He3:C2φ: C6/C1C6 ⊆ Out Q8xC327212-(Q8xC3^2):2C6432,270
(Q8xC32):3C6 = Q8xC32:C6φ: C6/C1C6 ⊆ Out Q8xC327212-(Q8xC3^2):3C6432,368
(Q8xC32):4C6 = (Q8xHe3):C2φ: C6/C1C6 ⊆ Out Q8xC327212+(Q8xC3^2):4C6432,369
(Q8xC32):5C6 = C3xS3xSL2(F3)φ: C6/C1C6 ⊆ Out Q8xC32484(Q8xC3^2):5C6432,623
(Q8xC32):6C6 = C3:S3xSL2(F3)φ: C6/C1C6 ⊆ Out Q8xC3272(Q8xC3^2):6C6432,626
(Q8xC32):7C6 = SD16xHe3φ: C6/C1C6 ⊆ Out Q8xC32726(Q8xC3^2):7C6432,219
(Q8xC32):8C6 = C2xQ8:He3φ: C6/C2C3 ⊆ Out Q8xC32144(Q8xC3^2):8C6432,336
(Q8xC32):9C6 = C2xQ8xHe3φ: C6/C2C3 ⊆ Out Q8xC32144(Q8xC3^2):9C6432,407
(Q8xC32):10C6 = C4oD4xHe3φ: C6/C2C3 ⊆ Out Q8xC32726(Q8xC3^2):10C6432,410
(Q8xC32):11C6 = C3xC6xSL2(F3)φ: C6/C2C3 ⊆ Out Q8xC32144(Q8xC3^2):11C6432,698
(Q8xC32):12C6 = C32xQ8:2S3φ: C6/C3C2 ⊆ Out Q8xC32144(Q8xC3^2):12C6432,477
(Q8xC32):13C6 = C3xC32:11SD16φ: C6/C3C2 ⊆ Out Q8xC32144(Q8xC3^2):13C6432,493
(Q8xC32):14C6 = S3xQ8xC32φ: C6/C3C2 ⊆ Out Q8xC32144(Q8xC3^2):14C6432,706
(Q8xC32):15C6 = C32xQ8:3S3φ: C6/C3C2 ⊆ Out Q8xC32144(Q8xC3^2):15C6432,707
(Q8xC32):16C6 = C3xQ8xC3:S3φ: C6/C3C2 ⊆ Out Q8xC32144(Q8xC3^2):16C6432,716
(Q8xC32):17C6 = C3xC12.26D6φ: C6/C3C2 ⊆ Out Q8xC32144(Q8xC3^2):17C6432,717
(Q8xC32):18C6 = SD16xC33φ: C6/C3C2 ⊆ Out Q8xC32216(Q8xC3^2):18C6432,518
(Q8xC32):19C6 = C4oD4xC33φ: trivial image216(Q8xC3^2):19C6432,733

Non-split extensions G=N.Q with N=Q8xC32 and Q=C6
extensionφ:Q→Out NdρLabelID
(Q8xC32).1C6 = He3:6Q16φ: C6/C1C6 ⊆ Out Q8xC3214412-(Q8xC3^2).1C6432,160
(Q8xC32).2C6 = Q8:C9:3S3φ: C6/C1C6 ⊆ Out Q8xC321444(Q8xC3^2).2C6432,267
(Q8xC32).3C6 = S3xQ8:C9φ: C6/C1C6 ⊆ Out Q8xC321444(Q8xC3^2).3C6432,268
(Q8xC32).4C6 = C6.(S3xA4)φ: C6/C1C6 ⊆ Out Q8xC327212+(Q8xC3^2).4C6432,269
(Q8xC32).5C6 = C3xDic3.A4φ: C6/C1C6 ⊆ Out Q8xC32484(Q8xC3^2).5C6432,622
(Q8xC32).6C6 = C3:Dic3.2A4φ: C6/C1C6 ⊆ Out Q8xC32144(Q8xC3^2).6C6432,625
(Q8xC32).7C6 = SD16x3- 1+2φ: C6/C1C6 ⊆ Out Q8xC32726(Q8xC3^2).7C6432,220
(Q8xC32).8C6 = Q16xHe3φ: C6/C1C6 ⊆ Out Q8xC321446(Q8xC3^2).8C6432,222
(Q8xC32).9C6 = Q16x3- 1+2φ: C6/C1C6 ⊆ Out Q8xC321446(Q8xC3^2).9C6432,223
(Q8xC32).10C6 = C6xQ8:C9φ: C6/C2C3 ⊆ Out Q8xC32432(Q8xC3^2).10C6432,334
(Q8xC32).11C6 = C2xQ8:3- 1+2φ: C6/C2C3 ⊆ Out Q8xC32144(Q8xC3^2).11C6432,335
(Q8xC32).12C6 = C3xQ8.C18φ: C6/C2C3 ⊆ Out Q8xC32216(Q8xC3^2).12C6432,337
(Q8xC32).13C6 = Q8:C9:4C6φ: C6/C2C3 ⊆ Out Q8xC32726(Q8xC3^2).13C6432,338
(Q8xC32).14C6 = C4oD4:He3φ: C6/C2C3 ⊆ Out Q8xC32726(Q8xC3^2).14C6432,339
(Q8xC32).15C6 = C2xQ8x3- 1+2φ: C6/C2C3 ⊆ Out Q8xC32144(Q8xC3^2).15C6432,408
(Q8xC32).16C6 = C4oD4x3- 1+2φ: C6/C2C3 ⊆ Out Q8xC32726(Q8xC3^2).16C6432,411
(Q8xC32).17C6 = C32xC4.A4φ: C6/C2C3 ⊆ Out Q8xC32144(Q8xC3^2).17C6432,699
(Q8xC32).18C6 = C9xQ8:2S3φ: C6/C3C2 ⊆ Out Q8xC321444(Q8xC3^2).18C6432,158
(Q8xC32).19C6 = C9xC3:Q16φ: C6/C3C2 ⊆ Out Q8xC321444(Q8xC3^2).19C6432,159
(Q8xC32).20C6 = S3xQ8xC9φ: C6/C3C2 ⊆ Out Q8xC321444(Q8xC3^2).20C6432,366
(Q8xC32).21C6 = C9xQ8:3S3φ: C6/C3C2 ⊆ Out Q8xC321444(Q8xC3^2).21C6432,367
(Q8xC32).22C6 = C32xC3:Q16φ: C6/C3C2 ⊆ Out Q8xC32144(Q8xC3^2).22C6432,478
(Q8xC32).23C6 = C3xC32:7Q16φ: C6/C3C2 ⊆ Out Q8xC32144(Q8xC3^2).23C6432,494
(Q8xC32).24C6 = SD16xC3xC9φ: C6/C3C2 ⊆ Out Q8xC32216(Q8xC3^2).24C6432,218
(Q8xC32).25C6 = Q16xC3xC9φ: C6/C3C2 ⊆ Out Q8xC32432(Q8xC3^2).25C6432,221
(Q8xC32).26C6 = Q16xC33φ: C6/C3C2 ⊆ Out Q8xC32432(Q8xC3^2).26C6432,519
(Q8xC32).27C6 = Q8xC3xC18φ: trivial image432(Q8xC3^2).27C6432,406
(Q8xC32).28C6 = C4oD4xC3xC9φ: trivial image216(Q8xC3^2).28C6432,409

׿
x
:
Z
F
o
wr
Q
<